Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS One ; 18(12): e0289581, 2023.
Article in English | MEDLINE | ID: mdl-38127933

ABSTRACT

The structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called ß-galactoglucomannan (ß-GGM) was discovered in eudicot plants. This galactoglucomannan has ß-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed ß-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired ß-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from ß-GGM. In addition, we searched for candidate mannan ß-galactosyltransferases (MBGT) in non-eudicot angiosperms. Candidate AtMBGT1 orthologues from rice (OsGT47A-VII) and Amborella (AtrGT47A-VII) did not show MBGT activity in vivo. However, the AtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme (OsGT47A-VII) contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan ß-galactosyltransferase activity. Our results indicate that ß-GGM is likely to be a eudicot-specific mannan.


Subject(s)
Arabidopsis , Magnoliopsida , Humans , Mannans/chemistry , Arabidopsis/genetics , Galactosyltransferases/genetics , Plants , Phylogeny
2.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823344

ABSTRACT

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Subject(s)
Arabidopsis , Humans , Arabidopsis/metabolism , Coffee/metabolism , Xylans/metabolism , Oligosaccharides/metabolism , Cell Wall/metabolism , Sugars/metabolism
3.
Curr Opin Struct Biol ; 79: 102564, 2023 04.
Article in English | MEDLINE | ID: mdl-36870276

ABSTRACT

Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.


Subject(s)
Carbohydrate Metabolism , Polysaccharides , Animals , Polysaccharides/metabolism , Cell Membrane/metabolism , Biological Transport , Cell Wall/metabolism
4.
Inquiry ; 59: 469580221141809, 2022.
Article in English | MEDLINE | ID: mdl-36541229

ABSTRACT

The CMS Innovation Center was created in section 3021 of the Affordable Care Act (ACA) with the promise to test payment and delivery models expected to reduce costs while improving or maintaining quality of care for Medicare, Medicaid, and Children's Health Insurance Program (CHIP) beneficiaries. Doug Badger's analysis of the Center for Medicare and Medicaid Innovation (CMMI), published in Inquiry, described how the CMMI has failed to accomplish its goals and makes a case for reforms. As a practicing clinician in private practice who has followed the implementation of the components of the Affordable Care Act, including the CMMI, his conclusions are not surprising. An examination of the clinically unworkable and recently delayed Radiation Oncology Alternative Payment Model demonstrates serious flaws in current CMMI methods. Government agencies have difficulty directing innovation. Clinicians know that real innovation will arise in unpredictable ways from the ingenious communities, providers, and organizations that deliver the care. Innovation will occur when an atmosphere of transparency forces providers to respond to the demands of patients. The CMMI would do well to redesign its processes. If "value" is the goal of CMS, then America deserves a better "value" from its healthcare agencies.


Subject(s)
Medicare , Patient Protection and Affordable Care Act , Aged , Child , Humans , United States , Medicaid , Delivery of Health Care , Health Facilities
5.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35929080

ABSTRACT

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Subject(s)
Arabidopsis , Xylans , Arabidopsis/genetics , Cell Wall/chemistry , Cellulose
6.
Vaccines (Basel) ; 10(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35746439

ABSTRACT

Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-ß, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.

7.
Am J Gastroenterol ; 117(5): 802-805, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35296630

ABSTRACT

INTRODUCTION: Prior authorizations (PAs) are intended to control prescription drug expenditures. METHODS: One hundred fifty-six physician and advanced practice provider members of the American College of Gastroenterology completed a national survey to assess PA burden and impact. RESULTS: One-half of PA requests relate to prescription refills. Greater than 50% of the respondents choose inferior treatments at least weekly because of perceived PA burden for preferred agents. One-half of the respondents reported a patient who experienced serious adverse events due to PA-related care delays. DISCUSSION: PA is an administrative burden that exhausts practice resources and may have a negative impact on patient care.


Subject(s)
Gastroenterology , Prescription Drugs , Health Expenditures , Humans , Patient Care , Prior Authorization , United States
8.
Front Plant Sci ; 13: 1076298, 2022.
Article in English | MEDLINE | ID: mdl-36714768

ABSTRACT

Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its ß-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.

9.
Vaccines, v. 10, n. 6, 831, maio. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4413

ABSTRACT

Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.

10.
EBioMedicine ; 47: 301-308, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31422044

ABSTRACT

BACKGROUND: Transmission of Mycobacterium leprae, the pathogen causing leprosy, is still persistent. To facilitate timely (prophylactic) treatment and reduce transmission it is vital to both early diagnose leprosy, and identify infected individuals lacking clinical symptoms. However, leprosy-specific biomarkers are limited, particularly for paucibacillary disease. Therefore, our objective was to identify new biomarkers for leprosy and assess their applicability in point-of-care (POC) tests. METHODS: Using multiplex-bead-arrays, 60 host-proteins were measured in a cross-sectional approach in 24-h whole blood assays (WBAs) collected in Bangladesh (79 patients; 54 contacts; 51 endemic controls (EC)). Next, 17 promising biomarkers were validated in WBAs of a separate cohort (55 patients; 27 EC). Finally, in a third cohort (36 patients; 20 EC), five candidate markers detectable in plasma were assessed for application in POC tests. FINDINGS: This study identified three new biomarkers for leprosy (ApoA1, IL-1Ra, S100A12), and confirmed five previously described biomarkers (CCL4, CRP, IL-10, IP-10, αPGL-I IgM). Overnight stimulation in WBAs provided increased specificity for leprosy and was required for IL-10, IL-1Ra and CCL4. The remaining five biomarkers were directly detectable in plasma, hence suitable for rapid POC tests. Indeed, lateral flow assays (LFAs) utilizing this five-marker profile detected both multi- and paucibacillary leprosy patients with variable immune responses. INTERPRETATION: Application of novel host-biomarker profiles to rapid, quantitative LFAs improves leprosy diagnosis and allows POC testing in low-resource settings. This platform can thus aid diagnosis and classification of leprosy and also provides a tool to detect M.leprae infection in large-scale contact screening in the field.


Subject(s)
Biomarkers , Host-Pathogen Interactions , Leprosy/blood , Leprosy/diagnosis , Point-of-Care Testing , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn , Leprosy/microbiology , Leprosy/transmission , Male , Point-of-Care Testing/standards , ROC Curve , Sensitivity and Specificity , Workflow , Young Adult
11.
PLoS Pathog ; 15(4): e1007724, 2019 04.
Article in English | MEDLINE | ID: mdl-30998773

ABSTRACT

Type 2 diabetes mellitus (DM) is a major risk factor for developing tuberculosis (TB). TB-DM comorbidity is expected to pose a serious future health problem due to the alarming rise in global DM incidence. At present, the causal underlying mechanisms linking DM and TB remain unclear. DM is associated with elevated levels of oxidized low-density lipoprotein (oxLDL), a pathologically modified lipoprotein which plays a key role during atherosclerosis development through the formation of lipid-loaded foamy macrophages, an event which also occurs during progression of the TB granuloma. We therefore hypothesized that oxLDL could be a common factor connecting DM to TB. To study this, we measured oxLDL levels in plasma samples of healthy controls, TB, DM and TB-DM patients, and subsequently investigated the effect of oxLDL treatment on human macrophage infection with Mycobacterium tuberculosis (Mtb). Plasma oxLDL levels were significantly elevated in DM patients and associated with high triglyceride levels in TB-DM. Strikingly, incubation with oxLDL strongly increased macrophage Mtb load compared to native or acetylated LDL (acLDL). Mechanistically, oxLDL -but not acLDL- treatment induced macrophage lysosomal cholesterol accumulation and increased protein levels of lysosomal and autophagy markers, while reducing Mtb colocalization with lysosomes. Importantly, combined treatment of acLDL and intracellular cholesterol transport inhibitor (U18666A) mimicked the oxLDL-induced lysosomal phenotype and impaired macrophage Mtb control, illustrating that the localization of lipid accumulation is critical. Collectively, these results demonstrate that oxLDL could be an important DM-associated TB-risk factor by causing lysosomal dysfunction and impaired control of Mtb infection in human macrophages.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Lipoproteins, LDL/metabolism , Lysosomes/pathology , Macrophages/microbiology , Mycobacterium tuberculosis/growth & development , Tuberculosis/microbiology , Autophagy , Case-Control Studies , Cells, Cultured , Cholesterol/metabolism , Cohort Studies , Humans , Incidence , Lysosomes/metabolism , Lysosomes/microbiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis/epidemiology , Tuberculosis/metabolism , Tuberculosis/pathology
12.
Front Immunol ; 9: 629, 2018.
Article in English | MEDLINE | ID: mdl-29670618

ABSTRACT

Background: Notwithstanding its beneficial immunoprophylactic outcomes regarding leprosy and childhood TB, BCG vaccination may cause adverse events, particularly of the skin. However, this local hyper-immune reactivity cannot be predicted before vaccination, nor is its association with protection against leprosy known. In this study we investigated the occurrence of adverse events after BCG (re)vaccination in contacts of leprosy patients and analyzed whether the concomitant systemic anti-mycobacterial immunity was associated with these skin manifestations. Methods: Within a randomized controlled BCG vaccination trial in Bangladesh, 14,828 contacts of newly diagnosed leprosy patients received BCG vaccination between 2012 and 2017 and were examined for adverse events 8 to 12 weeks post-vaccination. From a selection of vaccinated contacts, venous blood was obtained at follow-up examination and stimulated with Mycobacterium leprae (M. leprae) antigens in overnight whole-blood assays (WBA). M. leprae phenolic glycolipid-I-specific antibodies and 32 cytokines were determined in WBAs of 13 individuals with and 13 individuals without adverse events after vaccination. Results: Out of the 14,828 contacts who received BCG vaccination, 50 (0.34%) presented with adverse events, mainly (80%) consisting of skin ulcers. Based on the presence of BCG scars, 30 of these contacts (60%) had received BCG in this study as a booster vaccination. Similar to the pathological T-cell immunity observed for tuberculoid leprosy patients, contacts with adverse events at the site of BCG vaccination showed elevated IFN-γ levels in response to M. leprae-specific proteins in WBA. However, decreased levels of sCD40L in serum and GRO (CXCL1) in response to M. leprae simultaneously indicated less T-cell regulation in these individuals, potentially causing uncontrolled T-cell immunity damaging the skin. Conclusion: Skin complications after BCG vaccination present surrogate markers for protective immunity against leprosy, but also indicate a higher risk of developing tuberculoid leprosy. Clinical Trial Registration: Netherlands Trial Register: NTR3087.


Subject(s)
Leprosy/immunology , Mycobacterium bovis/immunology , Mycobacterium leprae/physiology , Skin Ulcer/immunology , Skin/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Bangladesh , CD40 Ligand/blood , Chemokine CXCL1/blood , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Interferon-gamma/metabolism , Leprosy/complications , Lymphocyte Activation , Male , Skin Ulcer/etiology , Vaccination/adverse effects , Young Adult
13.
Front Immunol ; 9: 308, 2018.
Article in English | MEDLINE | ID: mdl-29535713

ABSTRACT

Tuberculosis (TB) and leprosy still represent significant public health challenges, especially in low- and lower middle-income countries. Both poverty-related mycobacterial diseases require better tools to improve disease control. For leprosy, there has been an increased emphasis on developing tools for improved detection of infection and early diagnosis of disease. For TB, there has been a similar emphasis on such diagnostic tests, while increased research efforts have also focused on the development of new vaccines. Bacille Calmette-Guérin (BCG), the only available TB vaccine, provides insufficient and inconsistent protection to pulmonary TB in adults. The impact of BCG on leprosy, however, is significant, and the introduction of new TB vaccines that might replace BCG could, therefore, have serious impact also on leprosy. Given the similarities in antigenic makeup between the pathogens Mycobacterium tuberculosis (Mtb) and M. leprae, it is well possible, however, that new TB vaccines could cross-protect against leprosy. New TB subunit vaccines currently evaluated in human phase I and II studies indeed often contain antigens with homologs in M. leprae. In this review, we discuss pre-clinical studies and clinical trials of subunit or whole mycobacterial vaccines for TB and leprosy and reflect on the development of vaccines that could provide protection against both diseases. Furthermore, we provide the first preclinical evidence of such cross-protection by Mtb antigen 85B (Ag85B)-early secretory antigenic target (ESAT6) fusion recombinant proteins in in vivo mouse models of Mtb and M. leprae infection. We propose that preclinical integration and harmonization of TB and leprosy research should be considered and included in global strategies with respect to cross-protective vaccine research and development.


Subject(s)
Antigens, Bacterial/immunology , Leprosy , Mycobacterium leprae/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines , Tuberculosis, Pulmonary , Animals , Bacterial Proteins/immunology , Cross Protection , Disease Models, Animal , Humans , Leprosy/immunology , Leprosy/prevention & control , Mice , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/therapeutic use , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/prevention & control
14.
Nat Commun ; 9(1): 358, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367740

ABSTRACT

Antibiotic resistance poses rapidly increasing global problems in combatting multidrug-resistant (MDR) infectious diseases like MDR tuberculosis, prompting for novel approaches including host-directed therapies (HDT). Intracellular pathogens like Salmonellae and Mycobacterium tuberculosis (Mtb) exploit host pathways to survive. Only very few HDT compounds targeting host pathways are currently known. In a library of pharmacologically active compounds (LOPAC)-based drug-repurposing screen, we identify multiple compounds, which target receptor tyrosine kinases (RTKs) and inhibit intracellular Mtb and Salmonellae more potently than currently known HDT compounds. By developing a data-driven in silico model based on confirmed targets from public databases, we successfully predict additional efficacious HDT compounds. These compounds target host RTK signaling and inhibit intracellular (MDR) Mtb. A complementary human kinome siRNA screen independently confirms the role of RTK signaling and kinases (BLK, ABL1, and NTRK1) in host control of Mtb. These approaches validate RTK signaling as a drugable host pathway for HDT against intracellular bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Salmonella Infections/enzymology , Salmonella typhimurium/drug effects , Tuberculosis/enzymology , Cell Line , Computational Biology , Drug Resistance, Bacterial , Host-Pathogen Interactions/drug effects , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Salmonella typhimurium/physiology , Signal Transduction/drug effects , Tuberculosis/genetics , Tuberculosis/microbiology
15.
PLoS Negl Trop Dis ; 11(12): e0006083, 2017 12.
Article in English | MEDLINE | ID: mdl-29228004

ABSTRACT

BACKGROUND: Despite elimination efforts, the number of Mycobacterium leprae (M. leprae) infected individuals who develop leprosy, is still substantial. Solid evidence exists that individuals living in close proximity to patients are at increased risk to develop leprosy. Early diagnosis of leprosy in endemic areas requires field-friendly tests that identify individuals at risk of developing the disease before clinical manifestation. Such assays will simultaneously contribute to reduction of current diagnostic delay as well as transmission. Antibody (Ab) levels directed against the M.leprae-specific phenolic glycolipid I (PGL-I) represents a surrogate marker for bacterial load. However, it is insufficiently defined whether anti-PGL-I antibodies can be utilized as prognostic biomarkers for disease in contacts. Particularly, in Bangladesh, where paucibacillary (PB) patients form the majority of leprosy cases, anti-PGL-I serology is an inadequate method for leprosy screening in contacts as a directive for prophylactic treatment. METHODS: Between 2002 and 2009, fingerstick blood from leprosy patients' contacts without clinical signs of disease from a field-trial in Bangladesh was collected on filter paper at three time points covering six years of follow-up per person. Analysis of anti-PGL-I Ab levels for 25 contacts who developed leprosy during follow-up and 199 contacts who were not diagnosed with leprosy, was performed by ELISA after elution of bloodspots from filter paper. RESULTS: Anti-PGL-I Ab levels at intake did not significantly differ between contacts who developed leprosy during the study and those who remained free of disease. Moreover, anti-PGL-I serology was not prognostic in this population as no significant correlation was identified between anti-PGL-I Ab levels at intake and the onset of leprosy. CONCLUSION: In this highly endemic population in Bangladesh, no association was observed between anti-PGL-I Ab levels and onset of disease, urging the need for an extended, more specific biomarker signature for early detection of leprosy in this area. TRIAL REGISTRATION: ClinicalTrials.gov ISRCTN61223447.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Glycolipids/immunology , Leprosy/diagnosis , Mycobacterium leprae/immunology , Adolescent , Adult , Bangladesh/epidemiology , Biomarkers/blood , Child , Child, Preschool , Cohort Studies , Delayed Diagnosis/prevention & control , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Leprosy/immunology , Leprosy/transmission , Longitudinal Studies , Male , Mycobacterium leprae/isolation & purification , Prospective Studies , Young Adult
16.
Sci Rep ; 7(1): 8868, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827673

ABSTRACT

Early detection of leprosy is key to reduce the ongoing transmission. Antibodies directed against M. leprae PGL-I represent a useful biomarker for detecting multibacillary (MB) patients. Since efficient leprosy diagnosis requires field-friendly test conditions, we evaluated two rapid lateral flow assays (LFA) for detection of Mycobacterium leprae-specific antibodies: the visual immunogold OnSite Leprosy Ab Rapid test [Gold-LFA] and the quantitative, luminescent up-converting phosphor anti-PGL-I test [UCP-LFA]. Test performance was assessed in independent cohorts originating from three endemic areas. In the Philippine cohort comprising patients with high bacillary indices (BI; average:4,9), 94%(n = 161) of MB patients were identified by UCP-LFA and 78%(n = 133) by Gold-LFA. In the Bangladeshi cohort, including mainly MB patients with low BI (average:1), 41%(n = 14) and 44%(n = 15) were detected by UCP-LFA and Gold-LFA, respectively. In the third cohort of schoolchildren from a leprosy hyperendemic region in Brazil, both tests detected 28%(n = 17) seropositivity. Both rapid tests corresponded well with BI(p < 0.0001), with a fairly higher sensitivity obtained with the UCP-LFA assay. However, due to the spectral character of leprosy, additional, cellular biomarkers are required to detect patients with low BIs. Therefore, the UCP-LFA platform, which allows multiplexing with differential biomarkers, offers more cutting-edge potential for diagnosis across the whole leprosy spectrum.


Subject(s)
Antibodies, Bacterial/immunology , Leprosy/diagnosis , Leprosy/immunology , Mycobacterium leprae/immunology , Point-of-Care Testing , Serologic Tests/methods , Antigens, Bacterial/immunology , Biomarkers , Brazil , Enzyme-Linked Immunosorbent Assay , Humans , ROC Curve
17.
Sci Rep ; 6: 34260, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27682181

ABSTRACT

Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology.

18.
Clin Vaccine Immunol ; 23(6): 515-519, 2016 06.
Article in English | MEDLINE | ID: mdl-27030588

ABSTRACT

Acute inflammatory reactions represent the major cause of irreversible neuropathy in leprosy. These tissue-destroying episodes have considerable overlap with acute immunological complications (flares) in several chronic (autoimmune) diseases that similarly warrant early detection. However, the lack of diagnostic tests impedes early diagnosis of these reactions. Here, we evaluated a user-friendly multiplex lateral flow assay for the simultaneous detection of IP-10 and anti-phenolic glycolipid I antibodies for longitudinally monitoring early onset and treatment of leprosy reactions.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Chemokine CXCL10/blood , Enzyme-Linked Immunosorbent Assay , Glycolipids/immunology , Leprosy/immunology , Monitoring, Immunologic/methods , Point-of-Care Systems , Biomarkers/blood , Chemokine CXCL10/immunology , Early Diagnosis , Humans , Leprosy/complications , Leprosy/therapy , Mycobacterium leprae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...